2026-01-05

Pydantic-AI: Comprehensive Research Guide

research

Date: 2026-01-05 (Continuous Learning) Topic: Pydantic-AI framework for building AI agents Category: AI Engineering

Executive Summary

Pydantic-AI is a modern Python framework for building production-grade AI agents and applications, developed by the Pydantic team. It brings the "FastAPI feeling" to generative AI development with a focus on type safety, structured outputs, and developer experience. Unlike other agent frameworks, Pydantic-AI prioritizes:

  • Type Safety: Full Python type-hint support for IDE autocomplete and static type checking
  • Production Readiness: Durable execution, error handling, and comprehensive observability
  • Model Agnostic: Support for virtually every LLM provider (OpenAI, Anthropic, Gemini, DeepSeek, etc.)
  • Structured Outputs: Guaranteed validated AI responses via Pydantic models
  • Developer Experience: Familiar Python patterns with minimal boilerplate

The framework is open-source under MIT license and actively maintained with a v1 stability commitment.

Key Features

1. Type-Safe Structured Outputs

from pydantic import BaseModel, Field
from pydantic_ai import Agent

class SupportTicketResponse(BaseModel):
    advice: str = Field(description="Support advice for the customer")
    block_card: bool = Field(description="Whether to block the card")
    risk_level: int = Field(description="Risk score 0-10", ge=0, le=10)

agent = Agent('openai:gpt-4', output_type=SupportTicketResponse)
result = agent.run_sync("Customer question...")
# result.data is guaranteed to be a valid SupportTicketResponse instance

2. Dependency Injection

from dataclasses import dataclass
from pydantic_ai import Agent, RunContext

@dataclass
class ServiceDeps:
    database: Database
    http_client: AsyncClient
    api_key: str

agent = Agent('openai:gpt-4', deps_type=ServiceDeps)

@agent.tool
async def query_database(ctx: RunContext[ServiceDeps], query: str) -> str:
    result = await ctx.deps.database.execute(query)
    return str(result)

3. Function Tools

@agent.tool_plain  # Simple stateless tool
def get_user_balance(user_id: str) -> float:
    """Get the current balance for a user."""
    return fetch_balance_from_db(user_id)

@agent.tool  # Tool with access to agent context
async def send_notification(ctx: RunContext[Deps], user_id: str, message: str) -> str:
    """Send a notification to a user."""
    await ctx.deps.notification_service.send(user_id, message)
    return "Notification sent"

4. Durable Execution

Supports Temporal and Prefect integration for fault-tolerant workflows:

from pydantic_ai.durable import TemporalAgent

temporal_agent = TemporalAgent(
    agent=my_agent,
    namespace="default",
    task_queue="ai-agents"
)
# Automatically handles retries, checkpoints, and recovery

5. Model-Agnostic Provider Support

agent1 = Agent('openai:gpt-4')
agent2 = Agent('anthropic:claude-3-5-sonnet')
agent3 = Agent('google:gemini-2.5-pro')
agent4 = Agent('openrouter:deepseek/deepseek-chat')

6. Fallback Models

from pydantic_ai import Agent, FallbackModel

model = FallbackModel(
    OpenAIChatModel('gpt-4'),      # Primary
    AnthropicModel('claude-opus')  # Fallback
)
agent = Agent(model)

7. Observability (Logfire)

import logfire
logfire.configure()  # Enable automatic OpenTelemetry instrumentation

agent = Agent('openai:gpt-4')
# All agent runs, tool calls, and model requests automatically traced

Comparison with Other Frameworks

FeaturePydantic-AILangGraphCrewAIOpenAI SDK
Type SafetyExcellentGoodFairFair
Structured OutputsNativeGoodFairNative
Learning CurveLowMediumMediumLow
Durable ExecutionYesNoNoNo
ObservabilityExcellentGoodLimitedLimited
Multi-AgentGoodExcellentExcellentLimited
Model Support25+ providersVia LangChainMultipleOpenAI only

When to Use Pydantic-AI

Use Pydantic-AI for:

  • Type-safe, maintainable agents in Python
  • Structured output requirements (JSON schemas, validation)
  • Applications requiring durable execution and fault tolerance
  • Teams familiar with FastAPI and Pydantic
  • Strong observability requirements

Consider alternatives for:

  • Complex multi-agent orchestration → LangGraph or CrewAI
  • Extensive integration ecosystem → LangChain
  • Pre-built agent roles → CrewAI
  • OpenAI-only, minimal deps → OpenAI SDK

Key Insight

Pydantic-AI brings the "FastAPI feeling" to AI development - type safety, dependency injection, and production-readiness from day one.

Sources


Continuous Learning Task: 2026-01-05